Giải bài tập Hoạt động khám phá 2 trang 57 Toán 11 Tập 2 | Toán 11 - Chân trời sáng tạo

Hướng dẫn giải chi tiết từng bước bài tập Hoạt động khám phá 2 trang 57 Toán 11 Tập 2. Bài 2: Đường thẳng vuông góc với mặt phẳng. Toán 11 - Chân trời sáng tạo

Đề bài:

Cho đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b trong mặt phẳng (P). Xét một đường thẳng c bất kì trong (P) (c không song song với a và b). Gọi O là giao điểm của d và (P). Trong (P) vẽ qua O ba đường thẳng lần lượt song song với a, b, c. Vẽ một đường thẳng cắt a′, b′, c′ lần lượt tại B, C, D. Trên d lấy hai điểm E, F sao cho O là trung điểm của EF (Hình 4).

 

a) Giải thích tại sao hai tam giác CEB và CFE bằng nhau.

b) Có nhận xét gì về tam giác DEF? Từ đó suy ra góc giữa d và c.

Đáp án và cách giải chi tiết:

a) Ta có:

Tam giác EBF có EF ⊥ OB

O là trung điểm của EF

⇒ Tam giác EBF cân tại B.

⇒ BE = BF

Tương tự:

Tam giác ECF có EF ⊥ OC

O là trung điểm của EF

⇒ Tam giác ECF cân tại C .

⇒ CE = CF

Xét ΔCEB và ΔCFB có:

BE = BF; CE = CF; cạnh BC chung

Do đó ΔCEB = ΔCFB (c.c.c)

b) Vì ΔCEB = ΔCFB nên DE = DF

Suy ra tam giác DEF cân tại D.

Mà DO là trung tuyến của tam giác DEF nên DO ⊥ EF.

Do đó d ⊥ c.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 11 - Chân trời sáng tạo