Giải bài tập HĐ4 trang 57 Toán 11 Tập 2 | Toán 11 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập HĐ4 trang 57 Toán 11 Tập 2. Bài 26: Khoảng cách. Toán 11 - Kết nối tri thức
Đề bài:
Cho hai đường thẳng chéo nhau a và b. Gọi (Q) là mặt phẳng chứa đường thẳng b và song song với a. Hình chiếu a' của a trên (Q) cắt b tại N. Gọi M là hình chiếu của N trên a (H.7.83).
a) Mặt phẳng chứa a và a' có vuông góc với (Q) hay không?
b) Đường thẳng MN có vuông góc với cả hai đường thẳng a và b hay không?
c) Nêu mối quan hệ của khoảng cách giữa a, (Q) và độ dài đoạn thẳng MN.
Đáp án và cách giải chi tiết:
a) Vì a' là hình chiếu của a trên (Q) nên a và a' thuộc cùng một mặt phẳng. Hơn nữa, mặt phẳng đó chứa phương chiếu là đường thẳng vuông góc với (Q) nên mặt phẳng chứa a và a' vuông góc với (Q).
b) Gọi mặt phẳng chứa a và a' là mặt phẳng (P).
Vì a // (Q) và (P) (Q) = a' nên a // a'.
Vì MN a nên MN a'.
Trong mặt phẳng (P) có MN và phương chiếu vuông góc lên (Q) cùng vuông góc với a nên chúng song song với nhau. Do đó MN (Q) nên MN b.
c) Vì a // (Q) nên d(a, (Q)) = d(M, (Q)) = MN (vì MN (Q)).
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao