Giải bài tập Bài 1.23 trang 32 Toán 12 Tập 1 | SGK Toán 12 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập Bài 1.23 trang 32 Toán 12 Tập 1. Bài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số.. SGK Toán 12 - Kết nối tri thức
Đề bài:
Bài 1.23 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a)
b)
Đáp án và cách giải chi tiết:
a)
1. Tập xác định của hàm số là ℝ\{1}.
2. Sự biến thiên
Có
+) Có
+) Trên các khoảng , có y' > 0 nên hàm số đồng biến trên từng khoảng này.
Trên các khoảng , có y' < 0 nên hàm số nghịch biến trên khoảng này.
+) Hàm số đạt cực cực đại tại và đạt cực tiểu tại
+)
+) Tiệm cận
Do đó x = 1 là tiệm cận đứng của đồ thị hàm số và y = 2x +1 là tiệm cận xiên của đồ thị hàm số.
+) Bảng biến thiên
3. Đồ thị
+) Giao điểm của đồ thị hàm số với trục tung là (0; −4).
+) Đồ thị hàm số không cắt trục hoành.
+) Đồ thị hàm số nhận giao điểm I(1; 3) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận này làm các trục đối xứng.
b)
1. Tập xác định của hàm số là ℝ\{−3}.
2. Sự biến thiên
Có
+) Có
+) Trên các khoảng (−∞; −5) và (−1; +∞), y' > 0 nên hàm số đồng biến trên các khoảng này.
Trên các khoảng (−5; −3) và (−3; −1), y' < 0 nên hàm số nghịch biến trên các khoảng này.
+) Hàm số đạt cực đại tại x = −5 với yCĐ = −8; hàm số đạt cực tiểu tại x = −1 với yCT = 0.
+)
+) Tiệm cận
Do đó x = −3 là tiệm cận đứng của đồ thị hàm số và y = x – 1 là tiệm cận xiên của đồ thị hàm số.
+) Bảng biến thiên
3. Đồ thị
+) Giao điểm của đồ thị với trục tung là
+) Giao điểm của đồ thị với trục hoành là (−1; 0).
+) Đồ thị hàm số nhận giao điểm I(−3; −4) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận này làm các trục đối xứng.
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Các công thức liên quan:
Công thức đạo hàm
Công thức đạo hàm hay và đầy đủ nhất, công thức đạo hàm tính nhanh, công thức đạo hàm hàm đa thức, hàm căn thức, hàm phân thức hữu tỉ, hàm lượng giác, hàm mũ, hàm loga, hàm hợp