Giải bài tập Hoạt động khám phá 1 trang 80 Toán 11 Tập 1 | Toán 11 - Chân trời sáng tạo

Hướng dẫn giải chi tiết từng bước bài tập Hoạt động khám phá 1 trang 80 Toán 11 Tập 1. Bài 3: Hàm số liên tục. Toán 11 - Chân trời sáng tạo

Đề bài:

Cho hàm số có đồ thị như Hình 1.

Tại mỗi điểm x0 = 1 và x0 = 2, có tồn tại giới hạn không? Nếu có, giới hạn đó có bằng f(x0) không?

Đáp án và cách giải chi tiết:

+) Tại x0 = 1 ta có:

Dãy (xn) bất kì thỏa mãn xn < 1 và xn → 1 thì f(xn) = 1 khi đó .

Dãy (xn) bất kì thỏa mãn 1 < xn ≤ 2 và xn → 1 thì f(xn) = 1 + xn khi đó .

Suy ra . Do đó không tồn tại limx1fx.

+) Tại x0 = 2

Dãy (xn) bất kì thỏa mãn xn < 2 và xn → 2 thì f(xn) = 1 + xn khi đó .

Dãy (xn) bất kì thỏa mãn 2 < xn ≤ 3 và xn → 2 thì f(xn) = 5 – xn khi đó .

Suy ra . Do đó .

Ta có f(2) = 1 + 2 = 3.

Vì vậy .

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 11 - Chân trời sáng tạo