Giải bài tập Bài 7 trang 74 Toán lớp 10 Tập 2 | Toán 10 - Chân trời sáng tạo

Hướng dẫn giải chi tiết từng bước bài tập Bài 7 trang 74 Toán lớp 10 Tập 2. Bài tập cuối chương 9. Toán 10 - Chân trời sáng tạo

Đề bài:

Bài 7 trang 74 Toán lớp 10 Tập 2: Lập phương trình đường tròn trong các trường hợp sau:

a) Có tâm I(-2; 4) và bán kính bằng 9;

b) Có tâm I(1; 2) và đi qua điểm A(4; 5);

c) Đi qua hai điểm A(4; 1), B(6; 5) và có tâm nằm trên đường thẳng 4x + y – 16 = 0;

d) Đi qua gốc tọa độ và cắt hai trục tọa độ tại các điểm có hoành độ là a, tung độ là b.

Đáp án và cách giải chi tiết:

a) Phương trình có tâm I(-2; 4) và bán kính bằng 9 là:

(x + 2)2 + (y – 4)2 = 92

⇔ x2 + 4x + 4 + y2 – 8y + 16 = 81

⇔ x2 + y2 + 4x – 8y – 61 = 0

Vậy phương trình đường tròn cần tìm là x2 + y2 + 4x – 8y – 61 = 0.

b) Ta có:

Đường tròn cần tìm có tâm I và đi qua điểm A nên độ dài đoạn thẳng IA bằng bán kính của đường tròn nên

Phương trình đường tròn tâm I(1; 2) và bán kính là:

⇔ (x – 1)2 + (y – 2)2 = 18

Vậy phương trình đường tròn cần tìm là (x – 1)2 + (y – 2)2 = 18.

c) Xét phương trình đường thẳng 4x + y – 16 = 0 đi qua điểm M(4; 0) có VTPT là n 4; 1, khi đó VTCP của đường thẳng là u 1; -4.

Phương trình tham số của đường thẳng là:

Gọi I là tâm của đường tròn cần tìm.

Vì I nằm trên đường thẳng 4x + y – 16 = 0 nên I(4 + t; -4t).

Ta có:

Vì đường tròn đi qua hai điểm A và B nhận I làm tâm nên IA = IB = R.

Phương trình đường tròn tâm I(3; 4) và có bán kính  là:

⇔ (x – 3)2 + (y – 4)2 = 10.

Vậy phương trình đường tròn cần tìm là (x – 3)2 + (y – 4)2 = 10.

d) Gọi A, B là giao điểm của đường tròn cần tìm với lần lượt trục Ox và Oy.

Ta có hình vẽ sau:

Kẻ OH ⊥ Ox, OK ⊥ Oy

⇒ H là trung điểm của OA (đường kính vuông góc với dây) ⇒ OH = HA = 12OA = a2.

⇒ K là trung điểm của OB (đường kính vuông góc với dây) ⇒ OK = KB = 12OB = b2.

⇒ Ia2; b2

Phương trình đường tròn cần tìm là:

x - a22 + y - b22 = a2 + b24.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 10 - Chân trời sáng tạo