Giải bài tập Bài 4 trang 40 Toán 11 Tập 1 | Toán 11 - Cánh diều

Hướng dẫn giải chi tiết từng bước bài tập Bài 4 trang 40 Toán 11 Tập 1. Bài 4: Phương trình lượng giác cơ bản. Toán 11 - Cánh diều

Đề bài:

Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ 40° Bắc trong ngày thứ t của một năm không nhuận được cho bởi hàm số dt=3sinπ182t-80+12 với t và 0 < t ≤ 365.

(Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2020)

a) Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày nào trong năm?

b) Vào ngày nào trong năm thì thành phố A có đúng 9 giờ có ánh sáng mặt trời?

c) Vào ngày nào trong năm thì thành phố A có đúng 15 giờ có ánh sáng mặt trời?

Đáp án và cách giải chi tiết:

a) Để thành phố A có đúng 12 giờ có ánh sáng mặt trời th

3sin(π182t-80)+12=12

sinπ182t-80=0

π182t-80= k

t - 80 = 182k t

t = 80+182k t

Do t và 0 < t ≤ 365 nên ta có:

Với k = 0 thì t = 80 + 182.0 = 80;

Với k = 1 thì t = 80 + 182.1 = 262.

Vậy thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày thứ 80 và ngày thứ 262 trong năm.

b) Để thành phố A có đúng 9 giờ có ánh sáng mặt trời thì:

3sin(π182t-80)+12=9

sinπ182t-80=-1

π182t-80=-π2+k2π k

t - 80 = -91+364k k

t = -11+364k k

Do t và 0 < t ≤ 365 nên ta có:

Với k = 1 thì t = ‒11 + 364.1 = 353.

Vậy thành phố A có đúng 9 giờ có ánh sáng mặt trời vào ngày thứ 353 trong năm.

c) Để thành phố A có đúng 15 giờ có ánh sáng mặt trời thì:

3sin(π182(t-80))+12=15

sinπ182t-80=1

π182t-80=π2+k2π k

t - 80 = 91+364k k

t = 171+364k k

Do t và 0 < t ≤ 365 nên ta có:

Với k = 0 thì t = 171 + 364.0 = 171.

Vậy thành phố A có đúng 15 giờ có ánh sáng mặt trời vào ngày thứ 171 trong năm.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 11 - Cánh diều