Giải bài tập Bài 4 trang 40 Toán 11 Tập 1 | Toán 11 - Cánh diều
Hướng dẫn giải chi tiết từng bước bài tập Bài 4 trang 40 Toán 11 Tập 1. Bài 4: Phương trình lượng giác cơ bản. Toán 11 - Cánh diều
Đề bài:
Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ 40° Bắc trong ngày thứ t của một năm không nhuận được cho bởi hàm số với và 0 < t ≤ 365.
(Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2020)
a) Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày nào trong năm?
b) Vào ngày nào trong năm thì thành phố A có đúng 9 giờ có ánh sáng mặt trời?
c) Vào ngày nào trong năm thì thành phố A có đúng 15 giờ có ánh sáng mặt trời?
Đáp án và cách giải chi tiết:
a) Để thành phố A có đúng 12 giờ có ánh sáng mặt trời th
t - 80 = 182k
t = 80+182k
Do và 0 < t ≤ 365 nên ta có:
Với k = 0 thì t = 80 + 182.0 = 80;
Với k = 1 thì t = 80 + 182.1 = 262.
Vậy thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày thứ 80 và ngày thứ 262 trong năm.
b) Để thành phố A có đúng 9 giờ có ánh sáng mặt trời thì:
t - 80 = -91+364k
t = -11+364k
Do và 0 < t ≤ 365 nên ta có:
Với k = 1 thì t = ‒11 + 364.1 = 353.
Vậy thành phố A có đúng 9 giờ có ánh sáng mặt trời vào ngày thứ 353 trong năm.
c) Để thành phố A có đúng 15 giờ có ánh sáng mặt trời thì:
t - 80 = 91+364k
t = 171+364k
Do và 0 < t ≤ 365 nên ta có:
Với k = 0 thì t = 171 + 364.0 = 171.
Vậy thành phố A có đúng 15 giờ có ánh sáng mặt trời vào ngày thứ 171 trong năm.
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao