Giải bài tập Luyện tập 1 trang 45 Toán 11 Tập 2 | Toán 11 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập Luyện tập 1 trang 45 Toán 11 Tập 2. Bài 25: Hai mặt phẳng vuông góc. Toán 11 - Kết nối tri thức
Đề bài:
Cho hình chóp S.ABCD, đáy ABCD là một hình chữ nhật có tâm O, SO ⊥ (ABCD). Chứng minh rằng hai mặt phẳng (SAC) và (SBD) vuông góc với nhau khi và chỉ khi ABCD là một hình vuông.
Đáp án và cách giải chi tiết:
Gọi O là giao điểm của AC và BD.
Vì SO ⊥ (ABCD) nên SO ⊥ AO và SO ⊥ BO mà (SAC) ∩ (SBD) = SO, suy ra góc giữa hai mặt phẳng (SAC) và (SBD) bằng góc giữa hai đường thẳng AO và BO.
Mà (AO, BO) = .
+) Nếu (SAC) ⊥ (SBD) thì = 90°, khi đó AC ⊥ BD mà ABCD là hình chữ nhật, suy ra ABCD là hình vuông.
+) Nếu ABCD là hình vuông thì AC ⊥ BD, suy ra = 90° hay (SAC) ⊥ (SBD).
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao