Giải bài tập Bài 7.16 trang 53 Toán 11 Tập 2 | Toán 11 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Bài 7.16 trang 53 Toán 11 Tập 2. Bài 25: Hai mặt phẳng vuông góc. Toán 11 - Kết nối tri thức

Đề bài:

Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi H là hình chiếu của A trên BC.

a) Chứng minh rằng (SAB) ⊥ (ABC) và (SAH) ⊥ (SBC).

b) Giả sử tam giác ABC vuông tại A, , AC = a, . Tính số đo của góc nhị diện [S, BC, A].

Đáp án và cách giải chi tiết:

a) Vì SA ⊥ (ABC) nên (SAB) ⊥ (ABC).

Vì SA ⊥ (ABC) nên SA ⊥ BC.

Vì H là hình chiếu của A trên BC nên AH ⊥ BC.

Vì SA ⊥ BC và AH ⊥ BC nên BC ⊥ (SAH), suy ra (SAH) ⊥ (SBC).

b) Vì BC ⊥ (SAH) nên BC ⊥ SH mà AH ⊥ BC nên là góc phẳng nhị diện của góc nhị diện [S, BC, A].

Xét tam giác ABC vuông tại A, , AC = a có:

Xét tam giác ABC vuông tại A, có

Vì SA ⊥ (ABC) nên SA ⊥ AH.

Xét tam giác SAH vuông tại A có:

Vậy số đo của góc nhị diện [S, BC, A] bằng 45°.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 11 - Kết nối tri thức