Giải bài tập Bài 7.10 trang 42 Toán 11 Tập 2 | Toán 11 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Bài 7.10 trang 42 Toán 11 Tập 2. Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng. Toán 11 - Kết nối tri thức

Đề bài:

Cho hình chóp S.ABC có 𝑆𝐴(𝐴𝐵𝐶), tam giác ABC vuông tại B.

a) Xác định hình chiếu của điểm S trên mặt phẳng (ABC).

b) Xác định hình chiếu của tam giác SBC trên mặt phẳng (ABC).

c) Xác định hình chiếu của tam giác SBC trên mặt phẳng (SAB).

Đáp án và cách giải chi tiết:

 

a) Vì SA ⊥ (ABC) nên A là hình chiếu của S trên mặt phẳng (ABC).

b) Có A là hình chiếu của S trên mặt phẳng (ABC),

B là hình chiếu của B trên mặt phẳng (ABC),

C là hình chiếu của C trên mặt phẳng (ABC).

Do đó hình chiếu của tam giác SBC trên mặt phẳng (ABC) là tam giác ABC.

c) Có SA ⊥ (ABC) nên SA ⊥ BC.

Vì tam giác ABC vuông tại B nên AB ⊥ BC.

Do AB ⊥ BC và SA ⊥ BC nên BC ⊥ (SAB), suy ra B là hình chiếu của C trên mặt phẳng (SAB).

B là hình chiếu của B trên mặt phẳng (SAB), S là hình chiếu của S trên mặt phẳng (SAB).

Do đó hình chiếu của tam giác SBC trên mặt phẳng (SAB) là SB.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 11 - Kết nối tri thức