Giải bài tập Luyện tập 7 trang 87 Toán 11 Tập 2 | Toán 11 - Cánh diều
Hướng dẫn giải chi tiết từng bước bài tập Luyện tập 7 trang 87 Toán 11 Tập 2. Bài 2: Đường thẳng vuông góc với mặt phẳng. Toán 11 - Cánh diều
Đề bài:
Cho hình chóp S.ABCD có SA ⊥ (ABCD) và đáy ABCD là hình chữ nhật. Chứng minh rằng các tam giác SBC và SCD là các tam giác vuông.
Đáp án và cách giải chi tiết:
Ta có: SA ⊥ (ABCD), BC ⊂ (ABCD) và DC ⊂ (ABCD).
Suy ra: SA ⊥ BC và SA ⊥ DC.
Vì ABCD là hình chữ nhật nên BC ⊥ AB và DC ⊥ AD.
· Ta có: BC ⊥ SA, BC ⊥ AB và SA ∩ AB = A trong (SAB).
Suy ra BC ⊥ (SAB).
Mà SB ⊂ (SAB) nên BC ⊥ SB hay tam giác SBC vuông tại B.
· Ta có: DC ⊥ AD, DC ⊥ SA và AD ∩ SA = A trong (SAD).
Suy ra DC ⊥ (SAD).
Mà SD ⊂ (SAD) nên DC ⊥ SD hay tam giác SCD vuông tại D.
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao