Giải bài tập Bài 9.33 trang 98 Toán 11 Tập 2 | Toán 11 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập Bài 9.33 trang 98 Toán 11 Tập 2. Bài tập cuối chương 9. Toán 11 - Kết nối tri thức
Đề bài:
Vị trí của một vật chuyển động thẳng được cho bởi phương trình: s = f(t) = t3 – 6t2 + 9t, trong đó t tính bằng giây và s tính bằng mét.
a) Tính vận tốc của vật tại các thời điểm t = 2 giây và t = 4 giây.
b) Tại những thời điểm nào vật đứng yên?
c) Tìm gia tốc của vật tại thời điểm t = 4 giây.
d) Tính tổng quãng đường vật đi được trong 5 giây đầu tiên.
e) Trong 5 giây đầu tiên, khi nào vật tăng tốc, khi nào vật giảm tốc?
Đáp án và cách giải chi tiết:
a) Ta có: v(t) = s'(t) = 3t2 – 12t + 9.
Vận tốc của vật tại thời điểm t = 2 giây là v(2) = 3 . 22 – 12 . 2 + 9 = –3 (m/s).
Vận tốc của vật tại thời điểm t = 4 giây là v(4) = 3 . 42 – 12 . 4 + 9 = 9 (m/s).
b) Khi vật đứng yên ta có: v(t) = 0 ⇔ 3t2 – 12t + 9 = 0 ⇔ t = 1 hoặc t = 3.
Vậy tại thời điểm 1 giây hoặc 3 giây thì vật đứng yên.
c) Ta có: a(t) = s''(t) = 6t – 12.
Gia tốc của vật tại thời điểm t = 4 giây là a(4) = 6 . 4 – 12 = 12 (m/s2).
d) Ta có khi t = 1 hoặc t = 3 thì vật đứng yên.
Do đó, ta cần tính riêng rẽ quãng đường vật đi được trong từng khoảng thời gian [0; 1], [1; 3], [3; 5].
Ta có: f(0) = 03 – 6 . 02 + 9 . 0 = 0; f(1) = 13 – 6 . 12 + 9 . 1 = 4;
f(3) = 33 – 6 . 32 + 9 . 3 = 0; f(5) = 53 – 6 . 52 + 9 . 5 = 20.
Từ thời điểm t = 0 giây đến thời điểm t = 1 giây, vật đi được quãng đường là:
|f(1) – f(0)| = |4 – 0| = 4 (m).
Từ thời điểm t = 1 giây đến thời điểm t = 3 giây, vật đi được quãng đường là:
|f(3) – f(1)| = |0 – 4| = 4 (m).
Từ thời điểm t = 3 giây đến thời điểm t = 5 giây, vật đi được quãng đường là:
|f(5) – f(3)| = |20 – 0| = 20 (m).
Tổng quãng đường vật đi được trong 5 giây đầu tiên là 4 + 4 + 20 = 28 (m).
e) Xét a(t) = 0, tức là 6t – 12 = 0 ⇔ t = 2.
Với t ∈ [0; 2) thì gia tốc âm, tức là vật giảm tốc.
Với t ∈ (2; 5] thì gia tốc dương, tức là vật tăng tốc.
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Các công thức liên quan:
Công thức đạo hàm
Công thức đạo hàm hay và đầy đủ nhất, công thức đạo hàm tính nhanh, công thức đạo hàm hàm đa thức, hàm căn thức, hàm phân thức hữu tỉ, hàm lượng giác, hàm mũ, hàm loga, hàm hợp