Giải bài tập Bài 7 trang 10 Toán lớp 10 Tập 2 | Toán 10 - Chân trời sáng tạo

Hướng dẫn giải chi tiết từng bước bài tập Bài 7 trang 10 Toán lớp 10 Tập 2. Bài 1: Dấu của tam thức bậc hai. Toán 10 - Chân trời sáng tạo

Đề bài:

Bài 7 trang 10 Toán lớp 10 Tập 2: Chứng minh rằng với mọi số thực m ta luôn có 9m2 + 2m > - 3.

Đáp án và cách giải chi tiết:

Ta có: 9m2 + 2m > - 3

⇔ 9m2 + 2m + 3 > 0

Đặt f(m) = 9m2 + 2m + 3

Ta thấy f(m) là tam thức bậc hai với a = 9, b = 2 và c = 3.

Ta có: ∆ = 22 – 4.9.3 = 4 – 108 = -104 < 0. Do đó f(m) vô nghiệm và a = 9 > 0.

Khi đó ta có bảng xét dấu:

Từ bảng xét dấu ta thấy f(m) > 0 với mọi m

⇒ 9m2 + 2m + 3 > 0 với mọi m hay 9m2 + 2m > - 3 với mọi m.

Vậy 9m2 + 2m > - 3 với mọi m.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 10 - Chân trời sáng tạo