Giải bài tập Bài 5.16 trang 122 Toán 11 Tập 1 | Toán 11 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Bài 5.16 trang 122 Toán 11 Tập 1. Bài 17: Hàm số liên tục. Toán 11 - Kết nối tri thức

Đề bài:

Tìm giá trị của tham số m để hàm sốBài 5.16 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11liên tục trên ℝ.

Đáp án và cách giải chi tiết:

Tập xác định của hàm số là ℝ.

+) Nếu x > 0, thì f(x) = sin x. Do đó nó liên tục trên 0; +.

+) Nếu x < 0, thì f(x) = – x + m, đây là hàm đa thức nên nó liên tục trên -; 0.

Khi đó, hàm số f(x) liên tục trên các khoảng -; 0  0; +.

Do đó, để hàm số f(x) liên tục trên ℝ thì f(x) phải liên tục tại x = 0. Điều này xảy ra khi và chỉ khi limx0fx=f0limx0+fx=limx0-fx=f0 1.

Lại có: limx0+fx=limx0+sinx=0; f0=sin0=0; limx0-fx=limx0--x+m=m.

Khi đó, (1) ⇔ m = 0.

Vậy m = 0 thì thỏa mãn yêu cầu bài toán.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 11 - Kết nối tri thức