Giải bài tập Bài 4.45 trang 103 Toán 11 Tập 1 | Toán 11 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Bài 4.45 trang 103 Toán 11 Tập 1. Bài tập cuối chương 4. Toán 11 - Kết nối tri thức

Đề bài:

Cho hình hộp ABCD.A'B'C'D'. Gọi M, N lần lượt là trung điểm của cạnh AD, A'B'. Chứng minh rằng:

a) BD // B'D', (A'BD) // (CB'D') và MN // (BDD'B');

b) Đường thẳng AC' đi qua trọng tâm G của tam giác A'BD.

Đáp án và cách giải chi tiết:

 

a) Vì ABCD.A'B'C'Dlà hình hộp nên các mặt của nó là hình bình hành và các cạnh bên AA', BB', CC', DD' đôi một song song và bằng nhau.

Xét tứ giác BDD'B' có BB' = DD' và BB' // DD' nên BDD'Blà hình bình hành.

Suy ra BD // B'D'. Do đó, BD // (CB'D').

Vì A'B'C'D' là hình bình hành nên A'D' // B'C' và A'D' = B'C'.

Vì BCC'B' là hình bình hành nên BC // B'C' và BC = B'C'.

Do đó, A'D' // BC và A'D= BC nên A'D'CB là hình bình hành.

Suy ra A'B // D'C. Do đó, A'B // (CB'D').

Mặt phẳng (A'BD) chứa hai đường thẳng cắt nhau BD và A'B cùng song song với mặt phẳng (CB'D') nên (A'BD) // (CB'D').

Gọi E là giao điểm hai đường chéo AC và BD của hình bình hành ABCD. Khi đó E là trung điểm của AC và BD. Lại có M là trung điểm của AD nên ME là đường trung bình của tam giác ABD, suy ra ME // AB và ME=12AB 1.

Vì N là trung điểm của A'Bnên NB'=12A'B'. Mà AB = A'B' và AB // A'B' nên suy ra NB' // AB và NB'=12AB 2.

Từ (1) và (2) suy ra ME // NB' và ME = NBnên tứ giác MEB'N là hình bình hành.

Suy ra MN // B'E.

Vì E thuộc BD nên E thuộc mặt phẳng (BDD'B'), do đó đường thẳng B'E nằm trong mặt phẳng (BDD'B').

Vậy MN // (BDD'B').

b) Vì E thuộc AC nên E thuộc mặt phẳng (ACC'A').

Trong mặt phẳng (ACC'A') gọi G là giao điểm của A'E và AC', gọi I là giao điểm của AC' và AC.

Mà E thuộc BD nên E thuộc mặt phẳng (A'BD) nên A'E nằm trong mặt phẳng (A'BD). Vì G thuộc A'E nên G thuộc mặt phẳng (A'BD). Do đó, G là giao điểm của AC' và mặt phẳng (A'BD).

Tứ giác ACCA' có AA' = CC' và AA' // CC' nên ACC'Alà hình bình hành.

Suy ra I là giao điểm của hai đường chéo AC' và A'C nên I là trung điểm của ACvà A'C.

Xét tam giác AA'C có AI, A'E là các đường trung tuyến và G là giao của AI và A'E (do G là giao của AC' và A'E) nên G là trọng tâm của tam giác AA'C.

Suy ra A'GAE=23.

Xét tam giác A'BD có A'E là đường trung tuyến (do E là trung điểm của BD) và 𝐴'𝐺𝐴𝐸=23 nên G là trọng tâm của tam giác A'BD.

Vậy đường thẳng AC' đi qua trọng tâm G của tam giác A'BD.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 11 - Kết nối tri thức