Giải bài tập Bài 4 trang 48 Toán 11 Tập 1 | Toán 11 - Cánh diều
Hướng dẫn giải chi tiết từng bước bài tập Bài 4 trang 48 Toán 11 Tập 1. Bài 1: Dãy số. Toán 11 - Cánh diều
Đề bài:
Trong các dãy số (un) được xác định như sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?
a) un = n2 + 2;
b) un = – 2n + 1;
c) .
Đáp án và cách giải chi tiết:
a) Ta có: n ∈ ℕ* nên n ≥ 1 suy ra n2 + 2 ≥ 3
Do đó un ≥ 3
Vậy dãy số (un) bị chặn dưới bởi 3.
b) Ta có: n ∈ ℕ* nên n ≥ 1 suy ra un = – 2n + 1 ≤ – 1
Do đó un ≤ – 1.
Vậy dãy số (un) bị chặn trên bởi – 1.
c) Ta có:
Vì n ∈ ℕ* nên n ≥ 1 suy ra
Ta lại có:
Do đó
Vậy dãy số (un) bị chặn.
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Loading...
Bài tập liên quan:
Giải bài tập Toán 11 - Cánh diều
Xem tất cả
Bài 1: Đường thẳng và mặt phẳng trong không gian
Bài 2: Hai đường thẳng song song trong không gian
Bài 3: Đường thẳng và mặt phẳng song song
Bài 4: Hai mặt phẳng song song
Bài 5: Hình lăng trụ và hình hộp
Bài 6: Phép chiếu song song. Hình biểu diễn của một hình không gian
Bài tập cuối chương 4