Giải bài tập Bài 2 trang 18 Toán lớp 10 Tập 2 | Toán 10 - Chân trời sáng tạo

Hướng dẫn giải chi tiết từng bước bài tập Bài 2 trang 18 Toán lớp 10 Tập 2. Bài tập cuối chương 7. Toán 10 - Chân trời sáng tạo

Đề bài:

Bài 2 trang 18 Toán lớp 10 Tập 2: Giải các bất phương trình sau:

a) 7x2 – 19x – 6 ≥ 0;

b) – 6x2 + 11x > 10;

c) 3x2 – 4x + 7 > x2 + 2x + 1;

d) x2 – 10x + 25 ≤ 0.

Đáp án và cách giải chi tiết:

a) Tam thức bậc hai f(x) = 7x2 – 19x – 6 có a = 7 > 0 và ∆ = 192 – 4.7.(-6) = 529 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = 3 và x2 = -27

Suy ra f(x) dương khi x thuộc khoảng -; -27 và (3; +∞), f(x) âm khi x thuộc khoảng -27; 3 và f(x) = 0 khi x = 3 và x = -27

Vậy bất phương trình đã cho có tập nghiệm là S =

b) Tam thức bậc hai g(x) = – 6x2 + 11x – 10 có a = - 6 < 0 và ∆ = 112 – 4.(-6).(-10) = -119 < 0. Do đó g(x) vô nghiệm.

Suy ra g(x) luôn âm với mọi x thuộc ℝ

Vậy bất phương trình đã cho có tập nghiệm là S = 

c) Ta có: 3x2 – 4x + 7 > x2 + 2x + 1

⇔ 2x2 – 6x + 6 > 0

Tam thức bậc hai h(x) = 2x2 – 6x + 6 có a = 2 > 0 và ∆’ = 32 – 2.6 = - 3 < 0. Do đó h(x) có vô nghiệm.

Suy ra h(x) dương với mọi x thuộc ℝ.

Vậy bất phương trình đã cho có tập nghiệm S = ℝ.

d) Ta có tam thức bậc hai k(x) = x2 – 10x + 25 có a = 1 > 0 và ∆’ = 52 – 25 = 0. Do đó k(x) có nghiệm kép x1 = x2 = 5.

Suy ra f(x) dương khi x ≠ 5 và f(x) = 0 khi x = 5.

Vậy bất phương trình đã cho có tập nghiệm là S = {5}.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 10 - Chân trời sáng tạo