Giải bài tập Bài 10 trang 47 Toán 12 Tập 1 | SGK Toán 12 - Cánh diều

Hướng dẫn giải chi tiết từng bước bài tập Bài 10 trang 47 Toán 12 Tập 1. Bài tập cuối chương 1. SGK Toán 12 - Cánh diều

Đề bài:

Bài 10 trang 47 Toán 12 Tập 1: Một trang sách có dạng hình chữ nhật với diện tích là 384 cm2. Sau khi để lề trên và lề dưới đều là 3 cm, để lề trái và lề phải đều là 2 cm. Phần còn lại của trang sách được in chữ. Kích thước tối ưu của trang sách là bao nhiêu để phần in chữ trên trang sách có diện tích lớn nhất?

Đáp án và cách giải chi tiết:

Gọi x (cm) là chiều rộng của trang sách.

Khi đó, chiều dài của trang sách là384xcm.

Sau khi để lề thì phần in chữ có dạng hình chữ nhật có chiều rộng là x – 4 (cm) và chiều dài là 384x-6(cm).

Rõ ràng, x phải thỏa mãn điều kiện 4 < x < 64.

Diện tích phần in chữ trên trang sách là

S(x)=(x-4)(384x-6)=-6x2+408x-1536 x (cm2).

Xét hàm số S(x)=-6x2+408x-1536 x với x ∈ (4; 64).

Ta có S'(x)=-6x2+1536 x2<0;

S'(x)=0  -6x2 + 1536=0  x=-16 hoc x=16.

Khi đó trên khoảng (4;64), S'(x)=0 khi x = 16.

Bảng biến thiên của hàm số S(x) như sau:

Căn cứ vào bảng biến thiên, ta thấy: Trên khoảng (4;64), hàm số S(x) đạt giá trị lớn nhất bằng 216 tại x = 16. Khi đó, 38416=24.

Vậy kích thước tối ưu của trang sách là 16 × 24 (cm) thì in chữ trên trang sách có diện tích lớn nhất.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập SGK Toán 12 - Cánh diều