Giải bài tập Luyện tập 4 trang 46 Toán 10 Tập 2 | Toán 10 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Luyện tập 4 trang 46 Toán 10 Tập 2. Bài 21: Đường tròn trong mặt phẳng tọa độ. Toán 10 - Kết nối tri thức

Đề bài:

Cho đường tròn (C): x2 + y2 – 2x + 4y + 1 = 0. Viết phương trình tiếp tuyến ∆ của (C) tại điểm N(1; 0). 

Đáp án và cách giải chi tiết:

Ta có: x2 + y2 – 2x + 4y + 1 = 0 ⇔ x2 + y2 – 2.1.x – 2.(– 2).y + 1 = 0 

Các hệ số: a = 1, b = – 2, c = 1. 

Khi đó đường tròn (C) có tâm I(1; – 2). 

Do 12 + 0 – 2.1 + 0 + 1 = 0 nên điểm N(1; 0) thuộc (C). 

Tiếp tuyến ∆ của (C) tại điểm N(1; 0) có vectơ pháp tuyến , nên có phương trình ∆: 0(x – 1) + 2(y – 0) = 0 hay ∆: y = 0. 

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 10 - Kết nối tri thức