Giải bài tập Bài 7.16 trang 47 Toán 10 Tập 2 | Toán 10 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập Bài 7.16 trang 47 Toán 10 Tập 2. Bài 21: Đường tròn trong mặt phẳng tọa độ. Toán 10 - Kết nối tri thức
Đề bài:
Bài 7.16 trang 47 Toán 10 Tập 2: Trong mặt phẳng tọa độ, cho tam giác ABC, với A(6; – 2), B(4; 2), C(5; –5). Viết phương trình đường tròn ngoại tiếp tam giác đó.
Đáp án và cách giải chi tiết:
Đường tròn ngoại tiếp tam giác ABC là đường tròn đi qua ba điểm A, B, C.
Các đoạn thẳng AB, BC tương ứng có trung điểm là
Đường thẳng trung trực d1 của đoạn thẳng AB đi qua điểm M(5; 0) và có vectơ pháp tuyến
Vì cùng phương với nên d1 cũng nhận là vectơ pháp tuyến. Do đó, phương trình của d1 là: 1(x – 5) – 2(y – 0) = 0 hay x – 2y – 5 = 0.
Đường thẳng trung trực d2 của đoạn thẳng BC đi qua và có vectơ pháp tuyến
do đó phương trình d2 là:
hay x – 7y – 15 = 0.
Tâm I của đường tròn (C) ngoại tiếp tam giác ABC cách đều ba điểm A, B, C nên I là giao điểm của d1 và d2.
Vậy tọa độ của I là nghiệm của hệ phương trình
Suy ra I(1; – 2). Đường tròn (C) có bán kính là
Vậy phương trình của (C) là: (x – 1)2 + (y + 2)2 = 25.
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao