Giải bài tập Bài 9 trang 58 Toán 11 Tập 1 | Toán 11 - Cánh diều

Hướng dẫn giải chi tiết từng bước bài tập Bài 9 trang 58 Toán 11 Tập 1. Bài tập cuối chương 2. Toán 11 - Cánh diều

Đề bài:

Cho cấp số cộng (un). Tìm số hạng đầu u1, công sai d trong mỗi trường hợp sau:

a) u2 + u5 = 42 và u4 + u9 = 66;

b) u2 + u4 = 22 và u1.u5 = 21.

Đáp án và cách giải chi tiết:

a) Ta có: u2 + u5 = u1 + d + u1 + 3d = 42

⇔ 2u1 + 4d = 42

Ta lại có: u4 + u9 = u1 + 3d + u1 + 8d = 2u1 + 11d = 66

Khi đó ta có hệ phương trình:

Vậy số hạng đầu của cấp số cộng là: u1=997 và công sai d = 247

b) Ta có: u2 + u4 = u1 + d + u1 + 3d = 22

⇔ 2u1 + 4d = 22

⇔ u1 + 2d = 11

⇔ u1 = 11 – 2d

Ta lại có: u1.u5 = u1(u1 + 4d) = 21.

Thay u1 = 11 – 2d vào biểu thức trên ra được:

(11 – 2d)(11 – 2d + 4d) = 21

⇔ (11 – 2d)(11 + 2d) = 21

⇔ 121 – 4d2 = 21

⇔ d = 5 hoặc d = – 5.

Với d = 5 thì u1 = 1.

Với d = – 5 thì u1 = 21.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 11 - Cánh diều