Giải bài tập Bài 7.24 trang 56 Toán 10 Tập 2 | Toán 10 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập Bài 7.24 trang 56 Toán 10 Tập 2. Bài 22: Ba đường conic. Toán 10 - Kết nối tri thức
Đề bài:
Bài 7.24 trang 56 Toán 10 Tập 2: Có hai trạm phát tín hiệu vô tuyến đặt tại hai vị trí A, B cách nhau 300 km. Tại cùng một thời điểm, hai trạm cùng phát tín hiệu với vận tốc 292 000 km/s để một tàu thủy thu và đo độ lệch thời gian. Tín hiệu từ A đến sớm hơn tín hiệu từ B là 0,0005 s. Từ thông tin trên, ta có thể xác định được tàu thủy thuộc đường hybebol nào? Viết phương trình chính tắc của hypebol đó theo đơn vị kilômét.
Đáp án và cách giải chi tiết:
Chọn hệ trục tọa độ Oxy sao cho A, B nằm trên trục Ox, tia Ox trùng với tia OB, O là trung điểm của AB.
Ta có: AB = 300 nên AO = OB = AB : 2 = 300 : 2 = 150.
Khi đó ta xác định được tọa độ hai điểm A, B là: A(– 150; 0) và B(150; 0).
Gọi vị trí tàu thủy là điểm M nằm trên hypebol có 2 tiêu điểm là A và B.
Tín hiệu từ A đến sớm hơn tín hiệu từ B là 0,0005 s nên ta có:
|MA – MB| = 0,0005 . 292 000 = 146 (km).
Gọi phương trình chính tắc của hypebol cần lập có dạng: với a, b > 0.
Vì |MA – MB| = 146 = 2a ⇔ a = 73 (thỏa mãn).
Suy ra a2 = 732 = 5329.
Do hypebol có hai tiêu điểm là: A(– 150; 0) và B(150; 0) nên c = 150.
Ta có:
Suy ra (do b > 0).
Vậy tàu thủy thuộc đường hypebol có hai tiêu điểm là A(– 150; 0), B (150; 0), có tiêu cự 2c = 2 . 150 = 200 và có phương trình chính tắc là:
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao