Giải bài tập Bài 7 trang 32 SBT Toán 12 Tập 1 | SBT Toán 12 - Chân trời sáng tạo (SBT)

Hướng dẫn giải chi tiết từng bước bài tập Bài 7 trang 32 SBT Toán 12 Tập 1. Bài 4. Khảo sát và vẽ đồ thị một số hàm số cơ bản. SBT Toán 12 - Chân trời sáng tạo (SBT)

Đề bài:

Cho hàm số y = 2x-1-x+3. Chứng tỏ rằng đường thẳng y = −x cắt đồ thị hàm số đã cho tại hai điểm phân biệt.

Đáp án và cách giải chi tiết:

Cách 1:

Xét phương trình hoành độ giao điểm, có: 2x-1-x+3=-x (x ≠ 3).

⇔ 2x – 1 = −x(−x + 3)

⇔ 2x – 1 = x2 – 3x

⇔ x2 – 5x + 1 = 0

⇔ 32-5.3+1=-50=(-5)2-4.1=21>0.

Vậy phương trình có hai nghiệm phân biệt khác 3.

Vậy đường thẳng y = −x cắt đồ thị hàm số đã cho tại hai điểm phân biệt.

Cách 2:

Ta vẽ được đồ thị hàm số y = 2x-1-x+3 và đường thẳng y = −x trên cùng một hệ trục Oxy.

Ta thấy đường thẳng y = −x cắt đồ thị hàm số y = 2x-1-x+3 tại hai điểm phân biệt.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập SBT Toán 12 - Chân trời sáng tạo (SBT)