Giải bài tập Bài 6 trang 61 Toán lớp 10 Tập 1 | Toán 10 - Cánh diều

Hướng dẫn giải chi tiết từng bước bài tập Bài 6 trang 61 Toán lớp 10 Tập 1. Bài tập cuối chương 3. Toán 10 - Cánh diều

Đề bài:

Bài 6 trang 61 Toán lớp 10 Tập 1: Lập bảng xét dấu của mỗi tam thức bậc hai sau:

a) f(x) = – 3x2 + 4x – 1; 

b) f(x) = x2 – x – 12; 

c) f(x) = 16x2 + 24x + 9. 

Đáp án và cách giải chi tiết:

a) Tam thức bậc hai f(x) = – 3x2 + 4x – 1 có hệ số a = – 3 < 0, b = 4, c = – 1 và ∆ = 4– 4 . (– 3) . (– 1) = 4 > 0. 

Do đó tam thức f(x) có hai nghiệm phân biệt x1 = và x2 = 1. 

Sử dụng định lý về dấu của tam thức bậc hai, ta lập được bảng xét dấu như sau: 

b) Tam thức bậc hai f(x) = x2 – x – 12 có hệ số a = 1 > 0, b = – 1, c = – 12 và ∆ = (– 1)2 – 4 . 1 . (– 12) = 49 > 0. 

Do đó tam thức f(x) có hai nghiệm phân biệt x1 = – 3 và x2 = 4.

Sử dụng định lý về dấu của tam thức bậc hai, ta lập được bảng xét dấu sau:

c) Tam thức bậc hai f(x) = 16x2 + 24x + 9 có hệ số a = 16 > 0, b = 24, c = 9, ∆ = 242 – 4 . 16 . 9 = 0.

Do đó tam thức bậc hai có nghiệm kép x =

Sử dụng định lý về dấu của tam thức bậc hai, ta có bảng xét dấu sau: 

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 10 - Cánh diều