Giải bài tập Bài 6 trang 17 SBT Toán 12 Tập 1 | SBT Toán 12 - Chân trời sáng tạo (SBT)

Hướng dẫn giải chi tiết từng bước bài tập Bài 6 trang 17 SBT Toán 12 Tập 1. Bài 2. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số. SBT Toán 12 - Chân trời sáng tạo (SBT)

Đề bài:

Một chất điểm chuyển động theo phương ngang có tọa độ xác định bởi phương trình x(t) = −0,01t4 + 0,12t3 + 0,3t2 + 0,5 với x tình bằng mét, t tính bằng giây, 0 ≤ t ≤ 6. Tìm thời điểm mà tốc độ của chất điểm lớn nhất.

Đáp án và cách giải chi tiết:

Ta có: v(t) = x'(t) = −0,04t3 + 0,36t2 + 0,6t với 0 ≤ t ≤ 6.

           v'(t) = −0,12t2 + 0,72t + 0,6

           v'(t) = 0 ⇔ −0,12t2 + 0,72t + 0,6 = 0 ⇔ t = 3±14 (loại do 3±14 ∉ [0; 6]).

Ta tính được các giá trị: v(0) = 0, v(6) = 7,92.

Do đó, max[0;6] v(t) = v(6) = 7,92 (m/s).

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập SBT Toán 12 - Chân trời sáng tạo (SBT)