Giải bài tập Bài 6 trang 17 SBT Toán 12 Tập 1 | SBT Toán 12 - Chân trời sáng tạo (SBT)
Hướng dẫn giải chi tiết từng bước bài tập Bài 6 trang 17 SBT Toán 12 Tập 1. Bài 2. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số. SBT Toán 12 - Chân trời sáng tạo (SBT)
Đề bài:
Một chất điểm chuyển động theo phương ngang có tọa độ xác định bởi phương trình x(t) = −0,01t4 + 0,12t3 + 0,3t2 + 0,5 với x tình bằng mét, t tính bằng giây, 0 ≤ t ≤ 6. Tìm thời điểm mà tốc độ của chất điểm lớn nhất.
Đáp án và cách giải chi tiết:
Ta có: v(t) = x'(t) = −0,04t3 + 0,36t2 + 0,6t với 0 ≤ t ≤ 6.
v'(t) = −0,12t2 + 0,72t + 0,6
v'(t) = 0 ⇔ −0,12t2 + 0,72t + 0,6 = 0 ⇔ t = (loại do ∉ [0; 6]).
Ta tính được các giá trị: v(0) = 0, v(6) = 7,92.
Do đó, = v(6) = 7,92 (m/s).
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao