Giải bài tập Bài 5 trang 13 Toán lớp 10 Tập 2 | Toán 10 - Chân trời sáng tạo

Hướng dẫn giải chi tiết từng bước bài tập Bài 5 trang 13 Toán lớp 10 Tập 2. Bài 2: Giải bất phương trình bậc hai một ẩn. Toán 10 - Chân trời sáng tạo

Đề bài:

Bài 5 trang 13 Toán lớp 10 Tập 2: Mặt cắt ngang của mặt đường thường có dạng hình parabol để nước mưa dễ dàng thoáng sang hai bên. Mặt cắt ngang của một con đường được mô tả bằng hàm số y = - 0,006x2 với gốc tọa độ đặt tại tim đường và đơn vị đo là mét như trong Hình 4. Với chiều rộng của đường như thế nào thì tim đường cao hơn lề đường không quá 15cm.

Đáp án và cách giải chi tiết:

Gọi A, H, B lần lượt là các điểm trên hình vẽ:

Đổi 15cm = 0,15 m

Để tim đường cao hơn lề đường không quá 15cm thì OH ≤ 0,15 hay – (– 0,006x2) ≤ 0,15

⇔ x2 – 25 ≥ 0

Xét tam thức bậc hai f(x) = x2 – 25 có ∆ = 02 – 4.(-25) = 100 > 0, a = 1 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = - 5 và x2 = 5.

Ta có bảng xét dấu:

Suy ra f(x) không âm khi x thuộc đoạn [-5; 5].

Tương ứng x1, x2 lần lượt là hoành độ của các điểm A và B. Khi đó AB = |x2 – x1| = |5 – (-5)| = 10.

Vậy độ rộng của đường là 10 m thì tim đường cao hơn lề đường không quá 15cm.

Nguồn: giaitoanhay.com


Tổng số đánh giá: 1

Xếp hạng: 5.0 / 5 sao