Giải bài tập Bài 1.43 trang 44 Toán 12 Tập 1 | SGK Toán 12 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập Bài 1.43 trang 44 Toán 12 Tập 1. Bài tập cuối chương 1. SGK Toán 12 - Kết nối tri thức
Đề bài:
Bài 1.43 trang 44 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) y = −x3 + 6x2 – 9x + 12;
b)
c)
Đáp án và cách giải chi tiết:
a) y = −x3 + 6x2 – 9x + 12
1. Tập xác định: D = ℝ.
2. Sự biến thiên
+) Có y' = −3x2 + 12x – 9; y' = 0 ⇔ −3x2 + 12x – 9 = 0 ⇔ x = 1 hoặc x = 3.
+) Trên khoảng (1; 3), y' > 0 nên hàm số đồng biến
Trên các khoảng (−∞; 1) và (3; +∞), y' < 0 nên hàm số nghịch biến.
+) Hàm số đạt cực tiểu tại x = 1 và yCT = 8; Hàm số đạt cực đại tại x = 3 và yCĐ = 12.
+) Giới hạn tại vô cực:
+) Bảng biến thiên
3. Đồ thị
+) Giao điểm của đồ thị với trục Oy là (0; 12).
+) Đồ thị hàm số đi qua điểm (1; 8); (3; 12).
+) Đồ thị hàm số có tâm đối xứng I(2; 10).
b)
1. Tập xác định: D = ℝ\{−1}.
2. Sự biến thiên
+)
+) Hàm số đồng biến trên các khoảng (−∞; −1) và (−1; +∞).
+) Hàm số không có cực trị.
+) Tiệm cận
Do đó x = −1 là tiệm cận đứng của đồ thị hàm số.
Do đó y = 2 là tiệm cận ngang của đồ thị hàm số.
+) Bảng biến thiên
3. Đồ thị
+) Giao điểm của đồ thị hàm số với trục Oy là (0; −1).
+) Giao điểm của đồ thị hàm số với trục Ox là
+) Đồ thị hàm số nhận giao điểm I(−1; 2) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận này làm trục đối xứng.
c)
1. Tập xác định: D = ℝ\{1}.
2. Sự biến thiên
+) Có
+) Hàm số đồng biến trên các khoảng (−∞; 1) và (1; +∞).
+) Hàm số không có cực trị.
+) Tiệm cận
Do đó x = 1 là tiệm cận đứng của đồ thị hàm số và y = x – 1 là tiệm cận xiên của đồ thị hàm số.
+) Bảng biến thiên
3. Đồ thị
+) Đồ thị hàm số giao với trục Oy tại (0; 0).
+) Đồ thị hàm số giao với trục Ox tại (0; 0); (2; 0).
+) Đồ thị hàm số nhận giao điểm I(1; 0) của hai đường tiệm cận làm tâm đối xứng và các đường phân giác của các góc tạo bởi hai đường tiệm cận này làm trục đối xứng.
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Các công thức liên quan:
Công thức đạo hàm
Công thức đạo hàm hay và đầy đủ nhất, công thức đạo hàm tính nhanh, công thức đạo hàm hàm đa thức, hàm căn thức, hàm phân thức hữu tỉ, hàm lượng giác, hàm mũ, hàm loga, hàm hợp