Giải bài tập Bài 1.40 trang 43 Toán 12 Tập 1 | SGK Toán 12 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Bài 1.40 trang 43 Toán 12 Tập 1. Bài tập cuối chương 1. SGK Toán 12 - Kết nối tri thức

Đề bài:

Bài 1.40 trang 43 Toán 12 Tập 1: Xét chiều biến thiên và tìm các cực trị (nếu có) của các hàm số sau:

a) y = x3 – 3x2 + 3x – 1;

b) y = x4 – 2x2 – 1;

c) y=2x-13x+1

d) y=x2+2x+2x+1

Đáp án và cách giải chi tiết:

a) y = x3 – 3x2 + 3x – 1

Tập xác định của hàm số là ℝ.

Có y' = 3x2 – 6x + 3; y' = 0 ⇔ 3x2 – 6x + 3 = 0 ⇔ x = 1.

Bảng biến thiên

Hàm số đồng biến trên các khoảng (−∞; 1) và (1; +∞).

Hàm số không có cực trị.

b) y = x4 – 2x2 – 1

Tập xác định: D = ℝ.

Có y' = 4x3 – 4x; y' = 0 ⇔ 4x3 – 4x = 0 ⇔ x = 0 hoặc x = 1 hoặc x = −1.

Bảng biến thiên

Hàm số đồng biến trên các khoảng (−1; 0) và (1; +∞).

Hàm số nghịch biến trên các khoảng (−∞; −1) và (0; 1).

Hàm số đạt cực đại tại x = 0 và y = −1.

Hàm số đạt cực tiểu tại x = −1; x = 1 và yCT = −2.

c) y=2x-13x+1

Tập xác định: D=\-13

Có y'=23x+1-32x-13x+12=53x+12>0, x-13

Hàm số đồng biến trên các khoảng -; -13  -13; +

Hàm số không có cực trị.

d) y=x2+2x+2x+1

Tập xác định: D = ℝ\{−1}.

Có y'=2x+2x+1-x2+2x+2x+12=x2+2xx+12

Có y' = 0 ⇔ x2 + 2x = 0 ⇔ x = 0 hoặc x = −2.

Bảng biến thiên

Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).

Hàm số nghịch biến trên các khoảng (−2; −1) và (−1; 0).

Hàm số đạt cực đại tại x = −2 và y = −2.

Hàm số đạt cực tiểu tại x = 0 và yCT = 2.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập SGK Toán 12 - Kết nối tri thức