Giải bài tập Luyện tập 3 trang 93 Toán 11 Tập 2 | Toán 11 - Cánh diều

Hướng dẫn giải chi tiết từng bước bài tập Luyện tập 3 trang 93 Toán 11 Tập 2. Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện. Toán 11 - Cánh diều

Đề bài:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA ⊥ (ABCD). Tính số đo của mỗi góc nhị diện sau:

a) [B, SA, D];

b) [B, SA, C].

Đáp án và cách giải chi tiết:

a) Ta có: SA ⊥ (ABCD) và AB ⊂ (ABCD), AD ⊂ (ABCD).

Suy ra: SA ⊥ AB, SA ⊥ AD.

Mà AB ∩ AD = A ∈ SA.

Do đó là góc phẳng nhị diện của góc nhị diện [B, SA, D].

Vì ABCD là hình vuông nên .

Vậy số đo của góc nhị diện [B, SA, D] bằng 90°.

b) Do SA ⊥ (ABCD) và AC ⊂ (ABCD) nên SA ⊥ AC.

Ta có: SA ⊥ AC, SA ⊥ AB (theo câu a) và AC ∩ AB = A ∈ SA.

Do đó  là góc phẳng nhị diện của góc nhị diện [B, SA, C].

Vì ABCD là hình vuông nên đường chéo AC là đường phân giác của góc BAD, do đó .

Vậy số đo của góc nhị diện [B, SA, C] = 45°.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 11 - Cánh diều