Giải bài tập Bài 1 trang 94 Toán 11 Tập 2 | Toán 11 - Cánh diều

Hướng dẫn giải chi tiết từng bước bài tập Bài 1 trang 94 Toán 11 Tập 2. Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện. Toán 11 - Cánh diều

Đề bài:

Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình thoi cạnh a và AC = a.

a) Tính số đo của góc nhị diện [B, SA, C].

b) Tính số đo của góc nhị diện [B, SA, D].

c) Biết SA = a, tính số đo của góc giữa đường thẳng SC và mặt phẳng (ABCD).

Đáp án và cách giải chi tiết:

a) Ta có: SA ⊥ (ABCD) và AB ⊂ (ABCD), AC ⊂ (ABCD).

Suy ra: SA ⊥ AB, SA ⊥ AC.

Mà AB ∩ AC = A ∈ SA.

Do đó  là góc phẳng nhị diện của góc nhị diện [B, SA, C].

Vì ABCD là hinh thoi cạnh a và AC = a nên ta có AB = AC = BC = a.

Suy ra tam giác ABC đều. Khi đó .

Vậy số đo của góc nhị diện [B, SA, C] = 60°.

b) Ta có: SA ⊥ (ABCD) và AB ⊂ (ABCD), AD ⊂ (ABCD).

Suy ra: SA ⊥ AB, SA ⊥ AD.

Mà AB ∩ AD = A ∈ SA.

Do đó  là góc phẳng nhị diện của góc nhị diện [B, SA, D].

Vì ABCD là hinh thoi cạnh a và AC = a nên ta có AD = AC = CD = a.

Suy ra tam giác ACD đều.

Khi đó

Ta có:

Vậy số đo của góc nhị diện [B, SA, D] bằng 120°.

c) Vì SA ⊥ (ABCD) nên AC là hình chiếu của SC trên (ABCD).

Suy ra góc giữa đường thẳng SA và mặt phẳng (ABC) là góc .

Xét tam giác SAC vuông tại (do SA ⊥ AC theo câu a) c:

. Do đó

Vậy góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 45°.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 11 - Cánh diều