Giải bài tập Hoạt động khám phá 3 trang 67 Toán 11 Tập 2 | Toán 11 - Chân trời sáng tạo

Hướng dẫn giải chi tiết từng bước bài tập Hoạt động khám phá 3 trang 67 Toán 11 Tập 2. Bài 3: Hai mặt phẳng vuông góc. Toán 11 - Chân trời sáng tạo

Đề bài:

Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến d, điểm M không thuộc (P) và (Q). Gọi H và K lần lượt là hình chiếu vuông góc của M lên (P) và (Q). Gọi là giao điểm của d và (MHK) (Hình 8).

a) Giả sử (P) ⊥ (Q), hãy cho biết tứ giác MHOK là hình gì? Tìm trong (P) đường thẳng vuông góc với (Q).

b) Giả sử (P) chứa đường thẳng a với a ⊥ (Q), hãy cho biết tứ giác MHOK là hình gì? Tính góc giữa (P) và (Q).

Đáp án và cách giải chi tiết:

a) Vì MH ⊥ (Q) nên MH ⊥ (OH)

MK ⊥ (Q) nên MK ⊥ OK

Mà (P) ⊥ (Q) nên HM ⊥ MK.

Tứ giác MHOK có

Vậy tứ giác MHOK là hình chữ nhật.

Trong (P) có OH ⊥ (Q).

b) Ta có:

Lại có MH ⊥ (P) nên OK ⊥ (P) ⇒ OK ⊥ OH

Tứ giác MHOK có

Vậy tứ giác MHOK là hình chữ nhật.

((P), (Q)) = (MH, MK) = .

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 11 - Chân trời sáng tạo