Giải bài tập Bài 5 trang 100 Toán 11 Tập 1 | Toán 11 - Cánh diều
Hướng dẫn giải chi tiết từng bước bài tập Bài 5 trang 100 Toán 11 Tập 1. Bài 2: Hai đường thẳng song song trong không gian. Toán 11 - Cánh diều
Đề bài:
Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB là đáy lớn và AB = 2CD. Gọi M, N lần lượt là trung điểm của các cạnh SA và SB. Chứng minh rằng đường thẳng NC song song với đường thẳng MD.
Đáp án và cách giải chi tiết:
Trong mặt phẳng (SAB), có: M, N lần lượt là trung điểm của SA và SB
Do đó MN là đường trung bình của tam giác
Suy ra MN // AB và MN =
Lại có AB // CD (do ABCD là hình thang) và AB = 2CD hay CD =
Do đó MN // CD và MN = CD.
Suy ra MNCD là hình bình hành.
Vì vậy MD // NC.
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Loading...
Bài tập liên quan:
Giải bài tập Toán 11 - Cánh diều
Xem tất cả
Bài 1: Đường thẳng và mặt phẳng trong không gian
Bài 2: Hai đường thẳng song song trong không gian
Bài 3: Đường thẳng và mặt phẳng song song
Bài 4: Hai mặt phẳng song song
Bài 5: Hình lăng trụ và hình hộp
Bài 6: Phép chiếu song song. Hình biểu diễn của một hình không gian
Bài tập cuối chương 4