Giải bài tập Bài 4.32 trang 100 Toán 11 Tập 1 | Toán 11 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Bài 4.32 trang 100 Toán 11 Tập 1. Bài 14: Phép chiếu song song. Toán 11 - Kết nối tri thức

Đề bài:

Hình 4.65 có thể là hình biểu diễn của một hình lục giác đều hay không? Vì sao?

Đáp án và cách giải chi tiết:

+) Xét hình lục giác đều MNPQRS có tâm O.

 

Ta nhận thấy:

- Tứ giác OSMN là hình thoi;

- Các điểm P, Q, R lần lượt là các điểm đối xứng của các điểm S, M, N qua tâm O.

Từ đó suy ra các vẽ hình biểu diễn của hình lục giác đều MNPQRS như sau:

- Vẽ hình bình hành O'S'M'N' biểu diễn cho hình thoi OSMN;

- Lấy các điểm P', Q', R' lần lượt là các điểm đối xứng của các điểm S', M', N' qua O', ta được hình biểu diễn M'N'P'Q'R'S' của hình lục giác đều MNPQRS.

 

+) Gọi I là giao điểm các đường chéo AD, BE và CF trong hình lục giác ABCDEF ở Hình 4.65.

 

Khi đó nếu ABCDEF là hình biểu diễn của hình lục giác đều thì phải thỏa mãn hai điều kiện:

- Tứ giác IFAB là hình bình hành (1);

- D, E, F lần lượt là các điểm đối xứng của các điểm A, B, C qua I (2).

Từ hình vẽ ta thấy điều kiện (2) thỏa mãn nhưng điều kiện (1) không thỏa mãn. Vậy Hình 4.65 không thể là hình biểu diễn của một hình lục giác đều.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 11 - Kết nối tri thức