Giải bài tập Bài 1.7 trang 9 SBT Toán 12 Tập 1 | SBT Toán 12 - Kết nối tri thức (SBT)

Hướng dẫn giải chi tiết từng bước bài tập Bài 1.7 trang 9 SBT Toán 12 Tập 1. Bài 1. Tính đơn điệu và cực trị của hàm số.. SBT Toán 12 - Kết nối tri thức (SBT)

Đề bài:

Một nhà phân phối đồ chơi trẻ em xác định hàm chi phí C(x) và hàm doanh thu R(x) (đều tính bằng trăm nghìn đồng) cho một loại đồ chơi như sau:

C(x) = 1,2x – 0,0001x2, 0 ≤ x ≤ 6 000,

R(x) = 3,6x – 0,0005x2, 0 ≤ x ≤ 6 000,

trong đó x là số lượng đồ chơi loại đó được sản xuất và bán ra. Xác định khoảng của x để hàm lợi nhuận P(x) = R(x) – C(x) đồng biến trên khoảng đó. Giải thích ý nghĩa thực tiễn và kết quả nhận được.

Đáp án và cách giải chi tiết:

Ta có:

P(x) = R(x) – C(x) = 3,6x – 0,0005x2 − 1,2x + 0,0001x2 = 2,4x – 0,0004x2,

0 ≤ x ≤ 6 000.

P'(x) = 2,4 – 0,0008x

P'(x) > 0 ⇔ 2,4 – 0,0008x > 0 ⇔ 0 < x < 3 000.

Từ đó, hàm lợi nhuận P(x) đồng biến trên khoảng (0; 30 000). Điều này nghĩa là khi số lượng đồ chơi loại đó được sản xuất và bán ra nằm trong khoảng (0; 3 000) thì càng sản xuất và bán nhiều, lợi nhuận thu được càng lớn.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập SBT Toán 12 - Kết nối tri thức (SBT)