Giải bài tập Vận dụng 4 trang 71 Toán 8 Tập 1 | Toán 8 - Chân trời sáng tạo

Hướng dẫn giải chi tiết từng bước bài tập Vận dụng 4 trang 71 Toán 8 Tập 1. Bài 3. Hình thang – Hình thang cân. Toán 8 - Chân trời sáng tạo

Đề bài:

Vận dụng 4 trang 71 Toán 8 Tập 1: Mặt cắt của một li giấy đựng bỏng ngô có dạng hình thang cân MNPQ (Hình 13) với hai đáy MN = 6 cm, PQ = 10 cm và độ dài hai đường chéo cm. Tính độ dài đường cao và cạnh bên của hình thang.

Đáp án và cách giải chi tiết:

• MNPQ là hình thang cân nên MN // QP; MQ = NP; (tính chất hình thang cân).

• Ta có: MN // QP (chứng minh trên) và NK ⊥ QP (giả thiết)

Suy ra NK ⊥ MN hay .

Xét DMHK và DKNM có:

;

MK là cạnh huyền chung;

(hai góc so le trong của QP // MN).

Do đó DMHK = DKNM (cạnh huyền – góc nhọn)

Suy ra HK = NM = 6 cm (hai cạnh tương ứng).

• Xét DMHQ và DNKP có:

;

MQ = NP (chứng minh trên);

(chứng minh trên).

Do đó DMHQ = DNKP (cạnh huyền – góc nhọn).

Suy ra QH = PK (hai cạnh tương ứng).

Mà QH + HK + PK = QP

Hay 2QH = QP – HK

Khi đó m 

Nên HP = HK + KP = 6 + 2 = 8 (cm).

• Áp dụng định lí Pythagore vào DMHP vuông tại H, ta có:

MP2 = MH2 + HP2

Suy ra

Do đó MH = 8 cm.

Áp dụng định lí Pythagore vào DMHQ vuông tại H, ta có:

MQ2 = MH2 + HQ2 = 82 + 22 = 64 + 4 = 68

Suy ra (cm).

Vậy hình thang cân MNPQ có độ dài đường cao là MH = NK = 8 cm; độ dài cạnh bên là  cm.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 8 - Chân trời sáng tạo