Giải bài tập Luyện tập 4 trang 83 Toán 12 Tập 2 | SGK Toán 12 - Cánh diều

Hướng dẫn giải chi tiết từng bước bài tập Luyện tập 4 trang 83 Toán 12 Tập 2. Bài 3. Phương trình mặt cầu.. SGK Toán 12 - Cánh diều

Đề bài:

Chứng minh rằng phương trình x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0 là phương trình của một mặt cầu. Tìm tâm I và bán kính R của mặt cầu đó.

Đáp án và cách giải chi tiết:

Cách 1:

Ta có x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0

⇔ x2 – 2.3.x + 9 + y2 – 2.1.y + 1 + z2 – 2.2.z + 4 = 9 + 1 + 4 + 11

⇔ (x – 3)2 + (y – 1)2 + (z – 2)2 = 25.

Vậy phương trình đã cho là phương trình của một mặt cầu có tâm I(3; 1; 2) và bán kính R = = 5.

Cách 2:

Ta có x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0

⇔ x2 + y2 + z2 – 2.3.x – 2.1.y – 2.2.z – 11 = 0

Khi đó a2 + b2 + c2 – d = 32 + 12 + 22 – (– 11) = 25 > 0.

Vậy phương trình đã cho là phương trình của một mặt cầu có tâm I(3; 1; 2) và bán kính R = = 5.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập SGK Toán 12 - Cánh diều