Giải bài tập Khám phá 2 trang 67 Toán 9 Tập 2 | Toán 9 - Chân trời sáng tạo

Hướng dẫn giải chi tiết từng bước bài tập Khám phá 2 trang 67 Toán 9 Tập 2. Bài 1. Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác. Toán 9 - Chân trời sáng tạo

Đề bài:

Gọi I là giao điểm ba đường phân giác của tam giác ABC. Vẽ ID, IE, IF lần lượt vuông góc với các cạnh BC, AC và AB (Hình 7).

a) Chứng minh rằng IE = IF = ID.

b) Vẽ đường tròn tâm I bán kính IE. Có nhận xét gì về vị trí của đường tròn này với ba cạnh của tam giác ABC?

Đáp án và cách giải chi tiết:

a) Xét ΔFBI vuông tại F và ΔDBI vuông tại D có:

 (do BI là phân giác góc );

IB chung.

Do đó ΔFBI = ΔDBI (cạnh huyền – góc nhọn).

Suy ra IF = ID (hai cạnh tương ứng) (1).

Xét ΔIDC vuông tại D và ΔIEC vuông tại E có:

(do IC là phân giác góc );

IC chung.

Do đó ΔIDC = ΔIEC (cạnh huyền – góc nhọn).

Suy ra ID = IE (hai cạnh tương ứng) (2).

Từ (1) và (2) suy ra  IE = IF = ID.

b) Đường tròn này tiếp xúc với ba cạnh của tam giác tại các điểm F, D, E.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 9 - Chân trời sáng tạo