Giải bài tập Bài 8.15 trang 78 Toán 11 Tập 2 | Toán 11 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Bài 8.15 trang 78 Toán 11 Tập 2. Bài 30: Công thức nhân xác suất cho hai biến cố độc lập. Toán 11 - Kết nối tri thức

Đề bài:

Trong đợt kiểm tra cuối học kì II lớp 11 của các trường trung học phổ thông, thống kê cho thấy có 93% học sinh tỉnh X đạt yêu cầu; 87% học sinh tỉnh Y đạt yêu cầu. Chọn ngẫu nhiên một học sinh của tỉnh X và một học sinh của tỉnh Y. Giả thiết rằng chất lượng học tập của hai tỉnh là độc lập. Tính xác suất để:

a) Cả hai học sinh được chọn đều đạt yêu cầu;

b) Cả hai học sinh được chọn đều không đạt yêu cầu;

c) Chỉ có đúng một học sinh được chọn đạt yêu cầu;

d) Có ít nhất một trong hai học sinh được chọn đạt yêu cầu.

Đáp án và cách giải chi tiết:

Xác suất để học sinh tỉnh X không đạt yêu cầu là 100% – 93% = 7% = 0,07.

Xác suất để học sinh tỉnh Y không đạt yêu cầu là 100% – 87% = 13% = 0,13.

Gọi A là biến cố: “Học sinh tỉnh X đạt yêu cầu”.

B là biến cố: “Học sinh tỉnh Y đạt yêu cầu”.

Khi đó ta có P(A) = 0,93; P(B) = 0,87; P(𝐴¯) = 0.07; P(𝐵¯) = 0,13 .

a) Xác suất để cả hai học sinh được chọn đều đạt yêu cầu là:

P(AB) = P(A) . P(B) = 0,93 . 0,87 = 0,8091.

b) Xác suất để cả hai học sinh được chọn đều không đạt yêu cầu là:

P(𝐴¯𝐵¯) = P(𝐴¯).P(𝐵¯) = 0,07 . 0,13 = 0,0091.

c) Xác suất để chỉ có đúng một học sinh được chọn đạt yêu cầu là:

P(A𝐵¯) + P(𝐴¯B) = 0,93 . 0,13 + 0,07 . 0,87 = 0,1818.

d) Xác suất để có ít nhất một trong hai học sinh được chọn đạt yêu cầu là:

P(A ∪ B) = P(A) + P(B) – P(AB) = 0,93 + 0,87 – 0,8091 = 0,9909.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 11 - Kết nối tri thức