Giải bài tập Bài 8.11 trang 71 Toán 10 Tập 2 | Toán 10 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Bài 8.11 trang 71 Toán 10 Tập 2. Bài 24: Hoán vị, chỉnh hợp và tổ hợp. Toán 10 - Kết nối tri thức

Đề bài:

Bài 8.11 trang 71 Toán 10 Tập 2: Có bao nhiêu số tự nhiên chia hết cho 5 mà mỗi số có bốn chữ số khác nhau?

Đáp án và cách giải chi tiết:

Gọi số có 4 chữ số cần tìm có dạng: 𝑎𝑏𝑐𝑑¯ và a, b, c, d ∈ A = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}, a ≠ 0, a ≠ b ≠ c ≠ d.

Để 𝑎𝑏𝑐𝑑¯ chia hết cho 5 thì d phải thuộc tập hợp {0; 5}, do đó có 2 cách chọn d. 

+ Trường hợp 1: d = 0.

Chọn a ∈ A \ {0}, a có 9 cách chọn. 

Chọn 2 số b, c ∈ A \ {0; a} và sắp thứ tự chúng, nên có 𝐴82=56 cách chọn. 

Do đó có: 9 . 56 = 504 số tự nhiên có 4 chữ số khác nhau có chữ số tận cùng là 0.

+ Trường hợp 2: d = 5.

Chọn a ∈ A \ {0; 5}, a có 8 cách chọn. 

Chọn 2 số b, c ∈ A \ {5; a} và sắp thứ tự chúng, nên có 𝐴82=56 cách chọn. 

Do đó có: 8 . 56 = 448 số tự nhiên có 4 chữ số khác nhau có chữ số tận cùng là 5.

Vì hai trường hợp là rời nhau, vậy theo quy tắc cộng có 504 + 448 = 952 số tự nhiên chia hết cho 5 mà mỗi số có bốn chữ số khác nhau. 

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 10 - Kết nối tri thức