Giải bài tập Bài 6 trang 104 Toán 11 Tập 1 | Toán 11 - Cánh diều

Hướng dẫn giải chi tiết từng bước bài tập Bài 6 trang 104 Toán 11 Tập 1. Bài 3: Đường thẳng và mặt phẳng song song. Toán 11 - Cánh diều

Đề bài:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy điểm M trên cạnh AD sao cho AD = 3AM. Gọi G, N lần lượt là trọng tâm của tam giác SAB, ABC.

a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD).

b) Chứng minh rằng MN song song với mặt phẳng (SCD) và NG song song với mặt phẳng (SAC).

Đáp án và cách giải chi tiết:


a) Ta có: S ∈ (SAB) và S ∈ (SCD) nên S là giao điểm của (SAB) và (SCD).

Lại có: AB // CD (do ABCD là hình bình hành);

            AB ⊂ (SAB);

            CD ⊂ (SCD).

Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng d đi qua S và song song với AB, CD.

b) • Gọi O là tâm của hình bình hành, khi đó BO = OD = 12BD

Xét DABC có N là trọng tâm của tam giác nên BNBO=23 do đó BNBD=BN2BO=12.23=13

Theo bài, AD = 3AM nên AMAD=13

Trong mặt phẳng (ABCD), xét ABD có AMAD=BNBD=13

Do đó MN // AB (theo định lí Thalès đảo)

Trong mặt phẳng (ABCD) có: AB // CD và MN // AB nên MN // CD.

Lại có CD ⊂ (SCD)

Do đó MN // (SCD).

• Gọi I là trung điểm của SA.

Xét SAB có G là trọng tâm của tam giác nên BGBI=23

Trong (BIO), xét DBIO có: BGBI=BNBO=23

Suy ra GN // IO (theo định lí Thalès đảo)

Mà IO ⊂ (SAC) nên GN // (SAC).

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 11 - Cánh diều