Giải bài tập Bài 3 trang 120 Toán 11 Tập 1 | Toán 11 - Chân trời sáng tạo
Hướng dẫn giải chi tiết từng bước bài tập Bài 3 trang 120 Toán 11 Tập 1. Bài 4: Hai mặt phẳng song song. Toán 11 - Chân trời sáng tạo
Đề bài:
Bài 3 trang 120 Toán 11 Tập 1: Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng khác nhau. Trên các đường chéo AC và BF lần lượt lấy các điểm M, N sao cho AM = BN. Các đường thẳng song song với AB vẽ từ M, N lần lượt cắt AD, AF tại M’, N’.
a) Chứng minh (CBE) // (ADF).
b) Chứng minh (DEF) // (MNN’M’).
Đáp án và cách giải chi tiết:
a) Ta có: BE // AF (ABEF là hình vuông) mà AF ⊂ (ADF) nên BE // (ADF).
BC // AD (ABCD là hình vuông) mà AD ⊂ (ADF) nên BC // (ADF)
Mặt khác BE, BC cắt nhau tại B và nằm trong mặt phẳng (CBE)
Vì vậy (CBE) // (ADF).
b) Trong mặt phẳng (ABF) có: NN’ // AD nên (định lí Thales).
Trong mặt phẳng (ADC) có: MM’ // DC nên (định lí Thales).
Ta có hình vuông ABCD và hình vuông ABEF là hai hình vuông bằng nhau vì cùng chung cạnh AB nên AC = BF mà AM = BN nên suy ra
Trong tam giác ADF, có nên M’N’ // DF (theo định lí Thales đảo).
Mà DF ⊂ (DEF) nên M’N’ // (DEF).
Ta có: MM’ // AD // DC (gt) mà DC ⊂ (DEF) nên MM’ // (DEF)
Ta lại có M’N’ và MM’ là hai đường thẳng cắt nhau tại M’ và cùng nằm trong (MNN’M’).
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao