Giải bài tập Bài 2 trang 113 Toán 11 Tập 1 | Toán 11 - Cánh diều

Hướng dẫn giải chi tiết từng bước bài tập Bài 2 trang 113 Toán 11 Tập 1. Bài 5: Hình lăng trụ và hình hộp. Toán 11 - Cánh diều

Đề bài:

Cho hình hộp ABCD.A’B’C’D’. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh BC, AA’, C’D’, AD’. Chứng minh rằng:

a) NQ // A’D’ và NQ = 12A'D'

b) Tứ giác MNQC là hình bình hành;

c) MN // (ACD’);

d) (MNP) // (ACD’).

Đáp án và cách giải chi tiết:

a)


Trong mp(ADD’A’), xét DAA’D’ có N, Q lần lượt là trung điểm của AA’ và AD’

Do đó NQ là đường trung bình của tam giác

Suy ra NQ // A’D’ và NQ = 12A'D'

b)

Ta có: A’D’ // AD // BC, mà NQ // A’D’ (câu a) nên NQ // BC hay NQ // MC.

Ta cũng có A’D’ = AD = BC, mà NQ = 12A'D' (câu a) nên NQ = 12BC

Lại có BM = MC = 12BC (do M là trung điểm BC)

Do đó NQ = MC.

Tứ giác MNQC có NQ // MC và NQ = MC nên là MNQC hình bình hành.

c)

Do MNQC hình bình hành nên MN // QC

Mà QC ⊂ (ACD’) nên MN // (ACD’).

d)

Gọi O là trung điểm của ABCD.

Trong (ABCD), xét DABC có O, M lần lượt là trung điểm của AC, BC nên OM là đường trung bình của tam giác

Do đó OM // AB và OM = 12AB

Mà AB // D’P nên OM // D’P.

Lại có D’P = 12D'C' và D’C’ = AB nên OM = D’P.

Xét tứ giác D’PMO có OM // D’P và OM = D’P nên là hình bình hành

Suy ra PM // D’O

Mà D’O ⊂ (ACD’) nên PM // (ACD’).

Ta có: MN // (ACD’);

           PM // (ACD’);

           MN, PM cắt nhau tại điểm M và cùng nằm trong mp(MNP)

Do đó (MNP) // (ACD’).

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 11 - Cánh diều