Giải bài tập Bài 1.7 trang 14 Toán 12 Tập 1 | SGK Toán 12 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập Bài 1.7 trang 14 Toán 12 Tập 1. Bài 1. Tính đơn điệu và cực trị của hàm số.. SGK Toán 12 - Kết nối tri thức
Đề bài:
Bài 1.7 trang 14 Toán 12 Tập 1: Tìm cực trị của các hàm số sau:
a) y = 2x3 – 9x2 + 12x – 5;
b) y = x4 – 4x2 + 2;
c) ;
d) .
Đáp án và cách giải chi tiết:
a) Tập xác định của hàm số là ℝ.
Có y' = 6x2 – 18x + 12; y' = 0 ⇔ x = 1 hoặc x = 2.
Lập bảng biến thiên của hàm số
Dựa vào bảng biến thiên, ta có
Hàm số đạt cực đại tại x = 1 và yCĐ = 0.
Hàm số đạt cực tiểu tại x = 2 và yCT = −1.
b) Tập xác định của hàm số là ℝ.
Có y' = 4x3 – 8x; y' = 0 ⇔ x = 0 hoặc hoặc
Lập bảng biến thiên của hàm số
Dựa vào bảng biến thiên, ta có:
Hàm số đạt cực tiểu tại và yCT = −2.
Hàm số đạt cực đại tại x = 0 và yCĐ = 2.
Hàm số đạt cực tiểu tại và yCT = −2.
c) Tập xác định của hàm số là ℝ\{1}.
Có
Có y' = 0 ⇔ x2 – 2x – 1 = 0
Lập bảng biến thiên của hàm số
Dựa vào bảng biến thiên, ta có:
Hàm số đạt cực đại tại
Hàm số đạt cực tiểu tại
d) Tập xác định của hàm số là D = [0; 2].
Có
Có y' = 0 ⇔ x = 1.
Lập bảng biến thiên của hàm số
Dựa vào bảng biến thiên ta có:
Hàm số đạt cực đại tại x = 1 và
Hàm số không có cực tiểu.
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Các công thức liên quan:
Công thức đạo hàm
Công thức đạo hàm hay và đầy đủ nhất, công thức đạo hàm tính nhanh, công thức đạo hàm hàm đa thức, hàm căn thức, hàm phân thức hữu tỉ, hàm lượng giác, hàm mũ, hàm loga, hàm hợp