Giải bài tập Bài 1.17 trang 15 SBT Toán 12 Tập 1 | SBT Toán 12 - Kết nối tri thức (SBT)
Hướng dẫn giải chi tiết từng bước bài tập Bài 1.17 trang 15 SBT Toán 12 Tập 1. Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số.. SBT Toán 12 - Kết nối tri thức (SBT)
Đề bài:
Giả sử một chiếc xe tải khi di chuyển với tốc độ x dặm/giờ sẽ tiêu thụ nhiên liệu ở mức gallon/dặm. Nếu giá nhiên liệu là 3,6 USD/gallon thì chi phí nhiên liệu C (tính bằng USD) khi lái xe 200 dặm với tốc dộ x dặm/giờ được cho bởi công thức
C = C(x) =
Ở đây, dặm và gallon là những đơn vị đo lường phổ biến của Mỹ. Biết rằng tốc độ (dặm/giờ) của xe tải trên một tuyến đường cao tốc bị hạn chế trong khoảng [10; 75]. Hỏi:
a) Lái xe ở tốc độ nào thì chi phí nhiên liệu sẽ ít nhất?
b) Nếu người lái xe tải được trả lương 28 USD/ giờ và tiền lương được cộng vào chi phí nhiên liệu thì tốc độ di chuyển của xe tải là bao nhiêu để chi phí tiết kiệm nhất (tức là tổng chi phí mà công ty phải trả cho lái xe và chi phí nhiên liệu là nhỏ nhất)?
Đáp án và cách giải chi tiết:
a) Ta có: C = C(x) = với x ∈ [10; 75].
C'(x) =
C'(x) = 0 ⇔ x = 50 (do x ∈[10; 75]).
Xét trên đoạn [10; 75], ta tính được: C(10) = 936; C(50) = 360; C(75) = 390.
Vậy xe tải đi với tốc độ 50 dặm/giờ thì chi phí nhiên liệu sẽ ít nhất.
b) Trong trường hợp người lái xe tải được trả lương 28 USD/giờ (khi xe chạy) thì chi phí C(X) khi lái xe s dặm là:
C(x) =
Ta có: C'(x) =
Suy ra C'(x) < 0 với mọi x ∈ [10; 75], tức là hàm số C(x) nghịch biến trên đoạn [10; 75]
Vậy xe phải di chuyển với tốc độ 72 dặm/ giờ thì tiết kiệm chi phí nhất.
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao