Giải bài tập Thực hành 7 trang 95 Toán 11 Tập 1 | Toán 11 - Chân trời sáng tạo

Hướng dẫn giải chi tiết từng bước bài tập Thực hành 7 trang 95 Toán 11 Tập 1. Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian. Toán 11 - Chân trời sáng tạo

Đề bài:

Cho hai đường thẳng a và b cắt nhau tại O và điểm M không thuộc mặt phẳng (a, b).

a) Tìm giao tuyến của hai mặt phẳng (M, a) và (M, b).

b) Lấy A, B lần lượt là hai điểm trên a, b và khác với điểm O. Tìm giao tuyến của (MAB) và mp(a, b).

c) Lấy điểm A’ trên đoạn MA và điểm B’ trên đoạn MB sao cho đường thẳng A’B’ cắt mp(a, b) tại C. Chứng minh ba điểm A, B, C thẳng hàng.

Đáp án và cách giải chi tiết:

a) Ta có hình vẽ sau:

Ta có:

M ∈ mp(M, a) và M ∈ mp(M, b) nên M ∈ (M, a) ∩ (M, b).

O là giao điểm của hai đường thẳng a và b, mà a ⊂ mp(M, a) và b ⊂ mp(M, b) nên O ∈ (M, a) ∩ (M, b).

Vậy giao tuyến của hai mặt phẳng (M, a) và (M, b) là đường thẳng qua hai điểm M và O.

b)

Ta có: A ∈ (MAB) và A ∈ a ⊂ mp(a, b) nên A ∈ (MAB) ∩ mp(a, b).

Ta lại có: B ∈ (MAB) và B ∈ b ⊂ mp(a, b) nên B ∈ (MAB) ∩ mp(a, b).

Vậy giao tuyến của (MAB) và mp(a, b) là đường thẳng AB.

c)

Ta có (MA’B’) cũng là mặt phẳng (MAB)

Mà (MAB) giao mp(a, b) là đường thẳng AB nên điểm C cũng thuộc đường thẳng này do đó ba điểm A, B, C thẳng hàng.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 11 - Chân trời sáng tạo