Giải bài tập Bài 6 trang 127 Toán 11 Tập 1 | Toán 11 - Chân trời sáng tạo

Hướng dẫn giải chi tiết từng bước bài tập Bài 6 trang 127 Toán 11 Tập 1. Bài tập cuối chương 4. Toán 11 - Chân trời sáng tạo

Đề bài:

Bài 6 trang 127 Toán 11 Tập 1: Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng 10. M là điểm trên SA sao cho SMSA=23. Một mặt phẳng (α) đi qua M song song với AB và CD, cắt hình chóp theo một tứ giác có diện tích là:

A. 4009

B. 2003

C. 409

D. 2009

Đáp án và cách giải chi tiết:

Đáp án đúng là: A

+) Trong mặt phẳng (SAB), từ M kẻ đường thẳng song song với AB cắt SB tại N.

Suy ra giao tuyến của (α) với (SAB) là MN.

+) Trong mặt phẳng (SBC), từ N kẻ đường thẳng song song với BC // AD cắt SC tại P.

Suy ra giao tuyến của (α) với (SBC) là NP.

+) Trong mặt phẳng (SAD), từ điểm M kẻ đường thẳng song song với AD cắt SD tại Q.

Suy ra giao tuyến của (α) với (SAD) là MQ.

Do đó mặt phẳng (MNPQ) là mặt phẳng (α) cần dựng.

Ta có MNPQ là hình vuông có cạnh bằng 23 cạnh hình vuông và bằng 203

Diện tích của MNPQ là: 2032=4009 đvdt

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 11 - Chân trời sáng tạo