Giải bài tập Bài 5 trang 110 Toán 9 Tập 1: | Toán 9 - Cánh diều
Hướng dẫn giải chi tiết từng bước bài tập Bài 5 trang 110 Toán 9 Tập 1: . Bài 3. Tiếp tuyến của đường tròn. Toán 9 - Cánh diều
Đề bài:
Cho đường tròn (O; R) đường kính AB và các đường thẳng m, n, p lần lượt tiếp xúc với đường tròn tại A, B, C (Hình 43).
Chứng minh:
a) AD + BE = DE;
b) và
c) Tam giác ODE vuông.
d)
Đáp án và cách giải chi tiết:
a) Vì DA, DC là hai tiếp tuyến của đường tròn (O) cắt nhau tại D nên DA = DC (tính chất hai tiếp tuyến cắt nhau).
Vì EB, EC là hai tiếp tuyến của đường tròn (O) cắt nhau tại E nên EB = EC (tính chất hai tiếp tuyến cắt nhau).
Do đó DA + EB = DC + EC hay AD + BE = DE.
b) Vì DA, DC là hai tiếp tuyến của đường tròn (O) cắt nhau tại D nên OA là tia phân giác của (tính chất hai tiếp tuyến cắt nhau).
Do đó (tính chất tia phân giác).
Vì EB, EC là hai tiếp tuyến của đường tròn (O) cắt nhau tại E nên OE tia phân giác của (tính chất hai tiếp tuyến cắt nhau).
Do đó (tính chất tia phân giác).
c) Ta có:
Mà và (chứng minh ở câu b)
Do đó
Vậy tam giác ODE vuông tại O.
d) Vì DE là tiếp tuyến của đường tròn (O) tại C nên OC ⊥ DE tại C.
Xét ∆ODE và ∆CDO có:
và là góc chung
Do đó ∆ODE ᔕ ∆CDO (g.g)
Suy ra (tỉ số các cạnh tương ứng)
Nên CO = hay = R.
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao