Giải bài tập Bài 2 trang 109 Toán 9 Tập 1: | Toán 9 - Cánh diều
Hướng dẫn giải chi tiết từng bước bài tập Bài 2 trang 109 Toán 9 Tập 1: . Bài 3. Tiếp tuyến của đường tròn. Toán 9 - Cánh diều
Đề bài:
Cho đường tròn (O) và dây AB. Điểm M nằm ngoài đường tròn (O) thỏa mãn điểm B nằm trong góc MAO và Chứng minh đường thẳng MA là tiếp tuyến của đường tròn (O).
Đáp án và cách giải chi tiết:
Kẻ OH ⊥ AB tại H và OH cắt BM tại N.
Xét ∆OAB có OA = OB (bán kính đường tròn (O)) nên ∆OAB cân tại A.
∆OAB cân tại A có đường cao OH nên OH đồng thời là đường phân giác của
Suy ra
Theo bài, nên
Xét ∆OAH vuông tại H, ta có: (tổng hai góc nhọn trong tam giác vuông)
Suy ra hay
Do đó MA ⊥ OA tại A, mà OA là bán kính của đường tròn (O) nên MA là tiếp tuyến của đường tròn (O).
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao