Giải bài tập Bài 2 trang 115 Toán 8 Tập 1 | Toán 8 - Cánh diều

Hướng dẫn giải chi tiết từng bước bài tập Bài 2 trang 115 Toán 8 Tập 1. Bài 6. Hình thoi. Toán 8 - Cánh diều

Đề bài:

Bài 2 trang 115 Toán 8 Tập 1: Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O. Chứng minh:

AC2 + BD2 = 4(OA2 + OB2) = 4AB2.

Đáp án và cách giải chi tiết:

Do ABCD là hình thoi nên hai đường chéo AC và BD vuông góc với nhau tại trung điểm O của mỗi đường.

Do đó AC = 2OA, BD = 2OB.

Ta có: AC2 + BD2 = (2OA)2 + (2OB)2 = 4OA2 + 4OB2 = 4(OA2 + OB2).

Xét ΔOAB vuông tại O, theo định lí Pythagore ta có:

AB2 = OA2 + OB2

Suy ra AC2 + BD2 = 4(OA2 + OB2) = 4AB2.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập Toán 8 - Cánh diều