Giải bài tập Bài 1 trang 47 SBT Toán 12 Tập 2 | SBT Toán 12 - Kết nối tri thức (SBT)
Hướng dẫn giải chi tiết từng bước bài tập Bài 1 trang 47 SBT Toán 12 Tập 2. Bài tập ôn tập cuối năm. SBT Toán 12 - Kết nối tri thức (SBT)
Đề bài:
Giá trị của tham số m để hàm số y = x3 – mx2 + 4x – 2023 đạt cực trị tại x = −2 là
A. Không tồn tại m.
B. m = −2.
C. m = 2.
D. m = 0.
Đáp án và cách giải chi tiết:
Đáp án đúng là: A
Tập xác định: D = ℝ.
Ta có: y' = x2 – 2mx + 4.
Để hàm số đạt cực đại tại x = −2 thì y'(−2) = 0 hay (−2)2 − 2m(−2) + 4 = 0 ⇔ m = 2.
Thử lại với m = 2, ta có y' = x2 – 2x + 4 = (x – 2)2 ≥ 0, ∀x ∈ ℝ.
Do đó, với m = 2 hàm số đồng biến trên ℝ, nên không có cực trị.
Vậy không tồn tại giá trị m thỏa mãn yêu cầu bài toán.
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Loading...
Bài tập liên quan:
Giải bài tập SBT Toán 12 - Kết nối tri thức (SBT)
Xem tất cả
Bài 1. Tính đơn điệu và cực trị của hàm số.
Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số.
Bài 3. Đường tiệm cận của đồ thị hàm số.
Bài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số.
Bài 5. Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn.
Bài tập cuối chương 1