Giải bài tập Hoạt động khám phá 9 trang 55 Toán 12 Tập 2 | SGK Toán 12 - Chân trời sáng tạo
Hướng dẫn giải chi tiết từng bước bài tập Hoạt động khám phá 9 trang 55 Toán 12 Tập 2. Bài 2. Phương trình đường thẳng trong không gian. SGK Toán 12 - Chân trời sáng tạo
Đề bài:
Cho đường thẳng d có vectơ chỉ phương và mặt phẳng (P) có vectơ pháp tuyến
. Biết d cắt (P) tại điểm N và hình chiếu vuông góc của d lên (P) là đường thẳng d'. Qua N vẽ đường thẳng ∆ vuông góc với (P) (Hình 12).
a) Nhắc lại định nghĩa góc giữa đường thẳng và mặt phẳng trong không gian.
b) Có nhận xét gì về số đo của hai góc α = (d, d'); β = (∆, d)?
c) Giải thích tại sao ta lại có đẳng thức: sin(d, (P)) = .
Đáp án và cách giải chi tiết:
a) Nếu đường thẳng a không vuông góc với (P) thì góc giữa a và hình chiếu a' của a trên (P) gọi là góc giữa đường thẳng a và (P). Kí hiệu (a, (P)).
b) Ta có α + β = 90° hay (d, d') + (∆, d) = 90° => (d, d') = 90° − (∆, d).
c) Vì (d, (P)) = (d, d') = 90° − (∆, d).
Do đó sin(d, (P)) = sin(90° − (∆, d)) = cos(∆, d) = .
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao